Endpoints of Resuscitation: Have We Progressed Beyond Lactate?

Ramon F. Cestero, MD

Associate Professor of Surgery
Medical Director, SICU
Program Director, Surgical Critical Care Fellowship
Trauma and Emergency Surgery
Disclosure

No financial relationships with commercial interests to disclose
What is Shock?

“Manifestation of the crude unhinging of the machinery of life”

Gross, 1872

“Failure to deliver and/or utilize adequate amounts of oxygen”

“An abnormality of the circulatory system that results in inadequate organ perfusion and tissue oxygenation”

American College of Surgeons Advanced Trauma Life Support Manual, 9E
Classes of Shock

<table>
<thead>
<tr>
<th>Class</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood loss (ml)</td>
<td>(\leq 750)</td>
<td>750-1500</td>
<td>1500-2000</td>
<td>(\geq 2000)</td>
</tr>
<tr>
<td>Blood loss (% blood volume)</td>
<td>(\leq 15%)</td>
<td>15-30%</td>
<td>30-40%</td>
<td>(\geq 40%)</td>
</tr>
<tr>
<td>Pulse rate</td>
<td><100</td>
<td>>100</td>
<td>>120</td>
<td>(\geq 140)</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>Normal</td>
<td>Normal</td>
<td>Decreased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Pulse pressure (mmHg)</td>
<td>Normal or increased</td>
<td>Decreased</td>
<td>Decreased</td>
<td>Decreased</td>
</tr>
<tr>
<td>Capillary refill test</td>
<td>Normal</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Respiratory rate</td>
<td>14-20</td>
<td>20-30</td>
<td>30-40</td>
<td>(>35)</td>
</tr>
<tr>
<td>Urine output (ml/hr)</td>
<td>(\geq 30)</td>
<td>20-30</td>
<td>5-15</td>
<td>Negligible</td>
</tr>
<tr>
<td>CNS-mental status</td>
<td>Slightly anxious</td>
<td>Mildly anxious</td>
<td>Anxious and confused</td>
<td>Confused, lethargic</td>
</tr>
<tr>
<td>Fluid replacement (3:1 rule)</td>
<td>Crystalloid</td>
<td>Crystalloid</td>
<td>Crystalloid + Blood</td>
<td>Crystalloid + Blood</td>
</tr>
</tbody>
</table>

ACS ATLS Manual, 9E
Resuscitation

• Restoration of normal physiology
• Standard physiologic values typically used (HR, BP, U/O)
• Values can be normal in setting of tissue hypoxia
• Significant abnormalities at cellular level may continue to exist
Endpoints of Resuscitation

• Developed to better guide resuscitative efforts

• Two general categories:
 • Hemodynamic Markers
 • BP (MAP), CVP, mixed venous oxygenation (SvO₂), pulse waveform analysis
 • Perfusion Markers
 • Base deficit, lactate
HEMODYNAMIC MARKERS
Mean Arterial Pressure

• Intuitive
• Universally available and interpretable
• Sepsis: MAP goals in EGDT showed improved outcomes
• Trauma: Hypotensive resuscitation may improve outcomes
• Normal values?
Hypotension Begins at 110 mm Hg: Redefining “Hypotension” With Data

Increasing mortality at SBP 110

“Hypotension” differs based on age

(<43yo) 108

117 (>43yo)
Mean Arterial Pressure

• Cons
 • Lack of universal MAP goal
 • Oxygenation at cellular level?
 • Hypotensive resuscitation: Not all studies supportive
 • Sepsis: Despite normalization of MAP, lactic acidosis may persist (cryptic septic shock)

• Surviving Sepsis Guidelines
 • MAP ≥ 65 in 1st 6 hours
Central Venous Pressure

- Common measurement
- Preload important determinant of cardiac output
- Surrogate for fluid responsiveness
- Surviving Sepsis guidelines
 - CVP 8-12 is “recommended physiologic target for resuscitation” in 1st 6 hours
Central Venous Pressure

• Reliability as indicator of fluid status controversial
 • Multiple studies: static pressure-derived values (CVP) do NOT accurately predict volume status

• Systematic review, 24 studies (Marik, 2008)
 • No association between CVP and blood volume
 • No association with fluid responsiveness
 • “CVP should not be used to make clinical decisions regarding patient management”
No correlation of CVP with volume status
Mixed/Central Venous Oxygen Saturation

- Systemic O2 is balance between oxygen delivery and consumption
- Venous O2 saturation (SvO2) reflects oxygen extraction
 - Mixed (SvO2) – PA catheter
 - Central (ScvO2) – central line
- Normal SvO2 65-75%
 - Low values suggest hypoxia
Mixed Venous Oxygen Saturation (SvO2)

- **Pros:**
 - True mixed venous sample
 - Data supports use in trauma, cardiac, sepsis

- **Cons**
 - Requires PA catheter
 - Normal SvO2 values do not guarantee adequate tissue oxygenation
 - Severe sepsis: SvO2 normal (or high) due to impaired O2 extraction
 - No survival benefit
 - No benefit in studies comparing lactate and ScvO2-based resuscitation protocols
Central Venous Oxygen Saturation (ScvO2)

- Requires central line placed in SVC, RA
- Regional vs global oxygenation
- Considerable debate on correlation of SvO2 and ScvO2

$\text{ScvO2} \geq \text{SvO2} \sim 7 \pm 4\%$
Central Venous Oxygen Saturation (ScvO2)

Pros
- Decreased in cardiogenic and hypovolemic shock
- Sepsis – EGDT (Rivers, NEJM 2001)
 - ScvO2: 16% reduction in mortality

Cons
- Requires CVC
- Regional vs vs global oxygenation
- Controversy with EGDT study and CVC use/data
 - Single center, reported mortality >20% higher than other studies (46%)
 - Proprietary catheter
 - Other studies have shown improvement in EGDT WITHOUT using ScvO2
• Randomized multicenter trial
• EGDT (including ScvO2) vs “Usual Care” in severe sepsis/shock
• 1260 patients, 56 hospitals
• No difference in 90 day mortality (29% both groups)
• EGDT: Increased IVFs, vasoactive drugs, transfusions, worse organ failure scores, longer ICU days
Arterial Pulse Waveform Analysis

- **Reverse Pulsus Paradoxus**
 - MV: BP increases on inspiration, falls during expiration

- **Stroke volume (SV) derived from arterial waveform**

- **Stroke volume variation (SVV) used to assess fluid responsiveness**

- **Multiple methods available: PiCCO, LiDICO, FloTrac**
Over 25 studies support use of SVV to predict fluid responsiveness (AUC > .84 considered to have good diagnostic accuracy)
Pulse Waveform Analysis: Limitations

- “SOS”
 - Small tidal volumes (<8cc/kg) and Spontaneous Breathing; Open Chest
 - Small changes in intrathoracic pressure/venous return (false negatives)
 - Sustained cardiac arrhythmia (Afib)

- Adequate waveform required
- Ideal patient: Ventilated, high TVs, no spontaneous breaths (paralyzed), no arrhythmia, no RV dysfunction
- Limited large or multicenter studies
BASE DEFICIT

• Marker anaerobic metabolism
• Surrogate marker for lactic acidosis
• Rapidly available as component of ABG

• Normal values -3 to +3 mMol
 • Mild 3-5, moderate 6-14, severe >15
 • Negative values represent acidosis
BASE DEFICIT

- Multiple studies support use in trauma
 - Independent predictor of mortality, ICU, and hospital LOS
 - Severity of deficit directly correlates to volume required in 24h and degree of hemorrhage
 - Failure to normalize BD correlates with mortality and organ failure
 - Complications: Severity correlates with ARF, ARDS, MOF, coagulopathy
BASE DEFICIT

• Limitations:
 • Affected by sodium bicarbonate, hypothermia, CO2 levels
 • Alcohol can artificially worsen BD
 • Other causes of acidosis can affect value (renal failure, DKA, CO2 retention)
 • BD does not correlate well with lactate levels
LACTATE

- Glucose metabolism by-product from pyruvate (aerobic vs anaerobic)
- Marker of anaerobic metabolism
- Balance between production/clearance (Liver>>Kidneys)
 - Hepatic or renal disease may increase lactate
Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit

- Retrospective review, SICU patients requiring HD monitoring/therapy
- Longer clearance = higher mortality
 - Clearance <24h 3%
 - Clearance 24-28h 13%
 - Clearance 48-96h 42%
 - No clearance 100%
- Time to lactate clearance was ONLY independent predictor of mortality (p<.0001)
Multicenter randomized, 300 pts
- Compared lactate vs ScvO2 in severe sepsis
- All pts normalized to CVP and MAP
- 2 groups: ScvO2 > 70% or lactate clearance ≥ 10%
- Lower mortality in lactate-guided group (17% vs 23%)
Early Lactate-Guided Therapy in Intensive Care Unit Patients

A Multicenter, Open-Label, Randomized Controlled Trial

Am J Respir Crit Care Med Vol 182. pp 752–761, 2010

• Multicenter randomized, 4 ICUs
• ICU med/surg, lactate ≥ 3.0, 350 pts
• 2 groups: Decrease lactate by >20% q2 hrs for initial 8h vs not following lactate (other resuscitation targets allowed)
• Lactate-guided group
 • Decreased mortality (34% vs 44%)
 • Shorter ICU stay
 • Weaned faster from ventilator and inotropes
LACTATE

• Overall
 • Easily measured laboratory value
 • Provides reliable estimate of hypoperfusion
 • Level I data supports its use as endpoint in goal-directed therapy

• Limitations
 • May be elevated for other etiologies
 • Liver failure, seizures, asthma, cardiac arrest, burns, DKA, malignancy, genetic disorders, drugs (EtOH, cocaine, metformin, B2 agonists, propofol)
 • May lack sensitivity (false negative in mesenteric ischemia, sepsis)
Have We Progressed Beyond Lactate?
Conclusions

• Multiple markers available
• No one single best endpoint
• Resuscitation remains guided by multiple clinical tools
• Global markers (lactate, BD, SvO2) are practical, easily available, and useful as supplements to experienced clinical assessments
UT Trauma & Emergency Surgery
San Antonio, Texas